Combinatorial gene therapy for bone regeneration: cooperative interactions between adenovirus vectors expressing bone morphogenetic proteins 2, 4, and 7.
نویسندگان
چکیده
Bone morphogenetic proteins (BMPs) have demonstrated effectiveness as bone regeneration agents whether delivered as recombinant proteins or via gene therapy. Current gene therapy approaches use vectors expressing single BMPs. In contrast, multiple BMPs are coordinately expressed during bone development and fracture healing. Furthermore, BMPs likely exist in vivo as heterodimeric molecules having enhanced biological activity. In the present study, we test the hypothesis that gene therapy-based bone regeneration can be enhanced by expressing combinations of BMPs. For in vitro studies, mesenchymal cell lines were transduced with individual adenoviruses containing BMP2, 4, or 7 cDNA under control of a CMV promoter (AdBMP2, 4, 7) or virus combinations. Significantly, combined transduction with AdBMP2 plus AdBMP7 or AdBMP4 plus AdBMP7 resulted in a synergistic stimulation of osteoblast differentiation. This synergy is best explained by formation of BMP2/7 and 4/7 heterodimers. To test in vivo biological activity, fibroblasts were transduced with specific virus combinations and implanted into C57BL6 mice. Consistent with in vitro results, strong synergy was observed using combined AdBMP2/BMP7 treatment, which induced twofold to threefold more bone than would be predicted based on the activity of individual AdBMPs. These studies show that dramatic enhancement of osteogenesis can be achieved using gene therapy to express specific combinations of interacting regenerative molecules.
منابع مشابه
Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7.
Bone morphogenetic proteins (BMPs) are well-established agents for inducing orthotopic and ectopic bone formation. However, their clinical usefulness as regenerative agents may be limited by a short in vivo half-life and low specific activity. BMP gene therapy is an alternative route for exploiting the bone-inductive activity of this class of molecules. To test the feasibility of this approach,...
متن کاملComparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells.
STUDY DESIGN An in vitro biologic study of the effects of adenovirus expressing bone morphogenetic proteins (BMPs) and adenovirus expressing Sox9 on extracellular matrix metabolism by bovine nucleus pulposus cells. OBJECTIVE To compare the effects of recombinant adenoviral vectors expressing various BMPs (2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, and 15) and Sox9 on extracellular matrix accumulat...
متن کاملEffect of combinatorial bone morphogenetic protein 2 and bone morphogenetic protein 7 gene delivery on osteoblastic differentiation
Purpose: Gene therapy (ex vivo) has recently been used as a means of delivering bone morphogenetic proteins (BMPs) to sites of tissue regeneration. In the present study, we investigated the effect of co-transduction of adenoviruses expressing BMP-2 and BMP-7 on osteogenesisof C2C12 cells in vitro. Methods: A replication-defective human adenovirus 5 (Ad5) containing a cDNA for BMPs in the E1 reg...
متن کاملBiological approaches to bone regeneration by gene therapy.
Safe, effective approaches for bone regeneration are needed to reverse bone loss caused by trauma, disease, and tumor resection. Unfortunately, the science of bone regeneration is still in its infancy, with all current or emerging therapies having serious limitations. Unlike current regenerative therapies that use single regenerative factors, the natural processes of bone formation and repair r...
متن کاملGene therapy for bone regeneration.
Nonunions and delayed unions are among the more challenging clinical and surgical entities an orthopaedic surgeon must manage. Effective strategies that address these complex problems are in need and gene therapy represents a potential therapeutic option. Among the many properties that bone morphogenetic proteins (BMPs) possess, their potent osteoinductive effects make them attractive growth fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cellular biochemistry
دوره 95 1 شماره
صفحات -
تاریخ انتشار 2005